災害実績に基づく土砂移動危険度簡易判定 ツールの開発

全国で使用可能な土砂災害危険度を簡易に判定するツールの開発

キーワード 土砂災害危険度判定,国土地理院DEM解析,システム開発

はじめに

近年、気候変動による降水量の増加等の極端気象に伴 い、全国で広域かつ激甚な土砂災害が発生しています。

これに対して、国土交通省では都道府県や市町村の災害 対応を支援するため、TEC-FORCE (Technical Emergency Control FORCE; 緊急災害対策派遣隊) を被災地へ派遣し ています。TEC-FORCE 隊員は全国の国土交通省の職員か ら構成され、土砂災害危険箇所の現地調査などを行うこと になります。

しかし、土地勘の少ない地域における災害後の現地調査 では、隊員の安全確保に資する情報が不足することが想定 されます。

そこで、本業務では令和3年度業務委託において土砂移 動危険度の簡易な判定手法ツール(以下、「簡易判定ツール」 とする)を開発しました。本年度、簡易判定ツールが現地 で使用可能となるよう改良を行いましたので、本稿で紹介し ます。

土砂移動危険度簡易判定ツールの現地情報取得機能に関する基本的な考え方

簡易判定ツールは現地調査員が手元のモバイル端末で全 国のいずれの地域でも、現在位置での土砂移動危険度を簡 易的・迅速に把握できることを目標としています。

そこで、簡易判定ツールの基本的な考え方は以下のとお りとしました。

- ① 複雑な計算(シュミレーション、流量など)を使用せず、 既往災害実績から作成したデータベースと地形要素(流 域面積・河床勾配)から土石流到達範囲を推定
- ② ① の地形要素は全国いずれの地点でも使用できるよう、 国土地理院の数値標高モデル (DEM:5m、10mメッ シュ)、シームレス地質図に基づく地質区分(9区分)を 使用
- ③ 現地調査員の手元のモバイル端末で支障なく動作する よう、土砂移動危険度の判定に用いるデータは外部サー バから読み込む

これにより、複雑な計算を行う数値シュミレーションと比 較して、速やかに危険度情報を示すことができます。

システムの開発要件の検討と簡易判定ツールの実装

簡易判定ツールを現地で使用できるようシステム開発・実 装を行いました。

簡易判定ツールは TEC-FORCE 隊員が使用することを 想定するため、既に国土交通省で活用されている砂防施設 の管理・点検の高度化・効率化を図るためのシステム(SMART SABO) を活用する際に隊員が実際に使用するデバイス(PC、 スマートフォン、タブレット)で動作するシステム開発を行い ました。本システムはスマートフォン、タブレットなどのモバ イル端末上での動作を基本とすることから、画面タップやピ ンチイン・アウトなどの動作に対応する仕様としました。ま た、メンテナンス性や汎用性の観点からシステムに用いる Web 地図やデータベースはオープンソースのソフトウェアを 用いました(表 1)。

システムに実装した機能の一覧を表2に示します。

表1 システム開発要件

開発要件	
OS	Android9、i0S15.7、windows10
Web地図	Leafret(地理院地図で採用のGISエンジン)
データベースシステム	PostgreSQL (各種データを格納)

表2 実装した機能一覧

機能	内容
流路探索	端末で取得される位置または任意地点から上流
	の最も集水面積の大きい主流路を探索し、流域面
	積と河床勾配を算出する機能
類似災害	流路探索機能で算出した流域面積と河床勾配か
探索	ら、類似した災害をデータベースから5事例探索
	する機能
土砂移動	抽出した5事例の氾濫幅と、探索した流路と指定地
危険度	点との距離を比較し、土砂氾濫範囲内となる危険
簡易判定	があるか判定する機能
移動ログ保存	モバイル端末で取得される位置情報を移動ログと
	して表示・保存する機能
データ	砂防堰堤などのGISデータを一般的なGISソフト
インポート	で取り込み可能なKML 形式でインポート・表示
	する機能

簡易判定ツールの動作確認の実施

各種機能を選択

される流路

DEM解析により自動表

緑線:5m. 青線:10m

手順①地図を選択

操作画面

(タップ)

システムに実装した機能について、図1に示す手順のよう に、モバイル端末上での動作確認を行い、想定した動作に ついて、いずれも正常に稼働することを確認しました。なお、 本システムは、全国いずれの地点でも動作することを目的と していることから、利根川水系砂防事務所管外の地点にお いても同様に動作確認を行ったところ、図1の手順2の画 面に示すとおり、土砂移動危険度が判定されることを確認 できました。

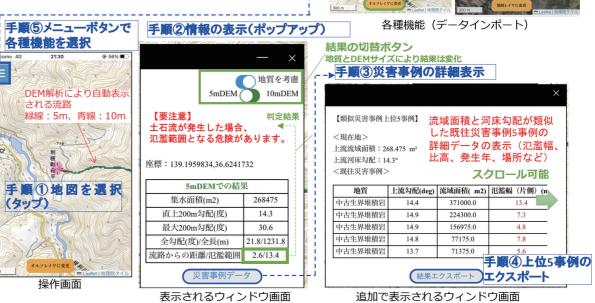


図1 簡易判定ツールの機能表示例

14.3

30.6

5mDEM

【要注意】

十石流が発生した場合.

座標: 139.1959834,36.6241732

集水面積(m2)

直上200m勾配(度)

最大200m勾配(度)

全勾配(度)/全長(m)

5mDEMでの結果

災害事例データ

現地テストの実施とツールの課題検証

実装した簡易判定ツールを利根川水系砂防事務所職員 (TEC-FORCE 経験者含む) と現地で使用し、システムの 有用性と課題の確認を行いました。現地テストより、本シス テムはモバイル端末でも遅滞なく動作し、職員の現位置お よび指定した任意座標で情報取得できました。また、調査 実施前においても調査箇所の情報を簡易的に事前把握でき るため、隊員の安全確保の面でも有用性が期待できるとの 意見がありました。他方、全国での活用を踏まえ、モバイ ル端末の GPS 機能で取得した現位置情報が画面中央に表 示されるような機能の実装が望ましいとの意見があったこと

から、システムへ追加実装しました。

今後の課題・改善策としては次のことが挙げられます。

- 流路探索に用いる DEM のメッシュサイズ (5m、10m) により現地流路位置とのズレが生じることに留意して使 用する必要がある。
- ・ 類似災害事例の氾濫範囲の視覚的な表示。
- ・ 直感的にわかりやすい危険度メッセージの表示方法に 改良する(危険度表示について抽出される類似5事例の うち氾濫範囲内となる事例数で表示の仕方を変更するな

おわりに

本業務では、災害実績に基づき簡易に土砂移動危険度を 判定するシステムを開発し、現地検証でツールの実用性を 確認しました。アジア航測は、土砂災害警戒区域などの情 報を活用し、より有効性の高いシステムの改善を行い、現 地調査者の安全につながる情報を取得できる仕組みの検討 に取り組んでいきます。

業務の遂行にあたり、国土交通省関東地方整備局利根 川水系砂防事務所の関係者の皆様には、多大なるご指導、 ご協力をいただきました。また、前 国土交通省国土技術政 策総合研究所 土砂災害研究室の中谷洋明室長には、本ツー ルの簡易判定手法構築について貴重な意見をいただきまし た。ここに記して感謝の意を表します。

36 技術報 技術報 37