3D浸水マップを活用した 時系列浸水可視化シミュレーション

三重県熊野市における3D都市モデルの活用

キーワード 3D都市モデル, 時系列津波データの可視化

中部インフラ技術部 西日本空間情報部

まつまか ゆうま かくたに つるぎ の せ かずひと 松岡 友希・角谷 剣・野瀬 和仁 神 完樹・北村 恭兵・坂口 智哉

社会システムコンサルタント部 大塚 直中・野中 秀樹

はじめに

現在、津波浸水ハザードマップとして 2D のマップが広く 使用されています。本稿では 2D のハザードマップでは認知 が難しい危険性について、時系列化した津波浸水データと PLATEAU^{*1}事業に基づく3D都市モデルを併用して作 成した時系列浸水可視化シミュレーションについて紹介し

津波による被害の原因とその軽減策

2011年の東日本大震災による津波は、多くの被害をもた らしました。その要因として2点が挙げられます。

1点目は、住民による津波の危険性の認知が不十分であっ たことです。現状の 2D の津波浸水ハザードマップでは、 水深の時系列的な推移は表現されていません。そのため、 いつ、どの程度浸水するのかが分かりにくくなっています。

2点目は、地形の影響です。態野市の沿岸部はリアス海 岸(新鹿地区)と直線的な海岸(井戸・有馬地区)の2種 類からなっています(図1参照)。リアス海岸のように入り組 んだ地形では、津波高が高くなり易いため、その影響を把 握しておく必要があります。

これらの課題を解決するため、国土交通省都市局が推進 する PLATEAU 事業に基づく 3D 都市モデルを整備・活用 しました。具体的には、入り組んだ地形を考慮して津波浸 水状況を 3D 化することで、津波が建物のどの高さまで到 来するのか、また時系列的にいつ、どの場所に、どのよう に到達するのかを可視化しました。

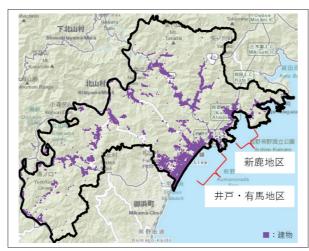


図1 熊野市内の建物分布

使用データ

浸水可視化シミュレーションを実施するにあたり、津波 データとして、「平成 24 年度 南海トラフの巨大地震等を想 定した三重県地震被害想定調査」および「三重県新地震対 策行動計画(仮称) 策定に係る委託業務 | にて整備された「理 論上最大クラス」の津波断層モデル 6 ケース (10 × 10m のポリゴンデータ)を使用しました。このデータは、内閣府 (2012) による理論上最大クラスの南海トラフ地震の津波 断層モデルのケース⑥と過去の南海トラフ地震における三 重県沿岸の津波高分布を概ね再現すると考えられる津波断 層モデルを用いて計算されたものです。また、都市計画基 本図・航空レーザ測量成果・災害リスクデータなど、複数

の既存データを使用して、熊野市全域のLOD1 **2 および LOD2 を整備しました。

図2 整備した建物モデルと津波モデル

時系列浸水データの作成

津波浸水モデルでは、1分単位の時系列表示が可能にな るように、国土交通省紀勢国道事務所および三重大学の有 識者と共同して、浸水速度と各メッシュ(10×10m)への 到達時間に応じた浸水深を算出しました。また、浸水速度 V [m/分] は、より危険側に振れるように以下の式で算出 しました。

 $V = D_{max} / (T_{Hmax} - T_{1cm})$

ここに、Dmax は最大浸水深 [m]、THmax は津波が最高水 位に到達する時間 「分」、Ticm は津波の水位が 1cm に到達 する時間[分]です。次に各メッシュの到達時間に応じた浸 水深 D [m] を次の式で求めました。

 $D = (T_n - T_{1cm}) \times V$

ここに、Tn は浸水深を求める時間[分] です。また、浸 水深の算出対象の時間が、津波の水位が 1cm に到達する 時間に達しない時は浸水深を Om とし、津波の水位が最大 浸水深の時刻に達した時は、最大浸水深としました。

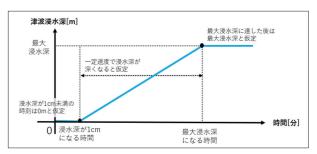


図3 津波の浸水速度と浸水時間の概念

沿岸部における検証

リアス海岸の新鹿地区では、津波が河川を遡り、河川周 辺の浸水深が高くなることが確認されました。これにより、 沿岸から遠く離れていても津波被害に遭う危険があると考え られます。また、図 4 のように高さ約 170cm の人型モデル を配置して、浸水深の上昇を見ると6分ほどで170cm以 上の浸水深となることが確認されました。

図4 建物LOD2等と浸水の表示イメージ

一方、直線的な海岸をもつ井戸・有馬地区では、最高水 位に達するのに12時間を要した地点がありました。また、 新鹿地区の居住地では浸水深が 5m 以上となりましたが、 井戸・有馬地区の居住地はほとんど浸水しないことが確認 されました。

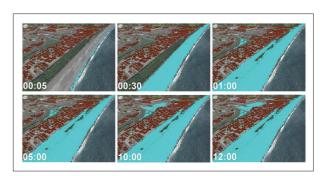


図5 井戸・有馬地区の浸水状況可視化の結果

まとめ

新鹿地区では数分で浸水することを考慮して避難経路を 決定し、その経路の危険性を確認する必要があります。井戸・ 有馬地区は新鹿地区と比べ、浸水速度が遅く、浸水高も低 くなる傾向にあります。このように、津波データを時系列と

して可視化することで、避難施設に浸水の可能性があるこ とや、逆に避難所に指定されていない場所でも津波が到達 せず、周辺住民の避難に適した場所があることが分かり、 避難場所の再検討につながりました。

おわりに

今後、浸水方向も含めて可視化することで遡った津波が 河川から到来するのか、海から波が到来するのかの判定に 基づいて避難経路と避難場所の再検討が可能になると考え

られます。また地域のワークショップで本検討結果の一層 の活用を図り、地域住民の意識・行動変容を促すことを目 標に本データの構築と利用を行っていきます。

20 技術報

^{*1} PLATFAUとは、国土交通省が進める3D都市モデル整備・活用・オープンデータ化プロジェクトのこと。

^{*2} LOD1とは、二次元の建物形状に高さを付与した三次元データのこと。LOD2とは、建物の屋根を付与したデータのこと。