鉄道MMSの本格導入・運用

JR西日本管内全域の検測を実現する鉄道MMS技術開発

キーワード:鉄道、MMS、点群解析、専用台車製作、運用システム構築

小堀 裕貴・大釜 弘志 もり たかあき おおはし くにたか 基盤システム開発部 **森 貴章** 大阪支店 **大橋 北**日

はじめに

近年、レールや駅ホームなどの鉄道設備では、線路工事 従事者が減少する一方で、既存設備の老朽化に伴い維持 管理のコストが増加しています。アジア航測は、2013年 度から西日本旅客鉄道株式会社(以下、JR 西日本)と共 同で、線路内作業の省力化・安全性向上と検査結果の高 精度化・均質化を実現する鉄道 MMS (Mobile Mapping System) の技術開発を行ってきました。7年の開発期間 を経た 2021 年 3 月からは、JR 西日本管内全域のレーザ 点群データを取得してホームなどを検測する本格運用を 開始しています。本稿では、この鉄道 MMS の概要と取 得点群データによる解析処理、成果提供についてご紹介 します。

鉄道MMS開発のロードマップ

アジア航測と JR 西日本で鉄道 MMS の本格運用に至る までの技術開発のロードマップは表1のとおりです。開 発初期は企画・試験計測フェーズで、アジア航測保有の 道路計測に特化した MMS を使用して線路軌道上で計測 を行い、線路内計測の経験を積み上げ、取得したデータ

から検測手法を検討しました。開発中期は導入検討・性 能評価フェーズであり、鉄道に適した MMS の性能評価 と機器選定を行いました。開発後期は設計・製造フェー ズで、運用に向けた鉄道 MMS 専用台車の製作と運用シ ステムの構築を進めました。

表1 技術開発のロードマップ

鉄道MMS専用台車の製作

既存のレール探傷車(走行しながらレール損傷等を計 測する車両) に鉄道 MMS を連結して運用できるよう、 専用の搭載台車を製作しました (図1)。計測はレール探 傷車の運行スケジュールに合わせて実施するため、①安 全性、②計測時間、③計測環境の課題を解決する必要が ありました。①安全面では、JIS 規格を満たした堅ろうで 十分な強度を有する部材を用い、落下等のない台車とし ました。②計測時間は夜間に最大6時間となるので、日 中に充電することでこの間常時稼働できるバッテリーを 用意して電源を確保しました。③計測環境面では、レー ル探傷車は雨天でも運行するため、MMS が濡れないよ う開閉カバーを設置しました。計測中に降雨があった場 合にカバーを閉じるとレーザ点群データは取得できませ んが、GNSS 信号を受信できる素材でカバーを作成して

いるため測位は継続できます。これにより計測の連続性 を確保し、天候回復時の迅速なレーザ計測の再開や作業 の確実な終了処理を実現します。

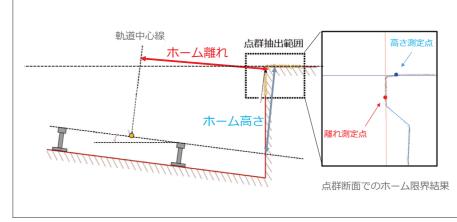


図1 鉄道MMS専用台車の外観

提供する検測手法

取得した鉄道 MMS の点群データを使ってホーム限界 と建築限界を解析するソフトウエア「LaserMapViewer 鉄道版」を用いて、検測を実施します。ホーム限界測定 では、車両とホームが接触しないか、さらに乗客が安全 に乗降できるかを確認するために、ホーム区間において レールから算出した軌道中心線とホーム端部との距離と

高さを、それぞれホーム離れ、ホーム高さとして測定し ます(図2)。建築限界測定では、設備や構造物等が車両 の走行する範囲に存在しないことを確認するため、レー ル横断面に規定の建築限界枠を配置し、建築限界枠と枠 外に存在する点群の最小距離を離隔量として測定します (図3)。

トンネル断面 構造物までの離隔量 建築限界枠

図2 ホーム限界測定

図3 建築限界測定

鉄道MMS運用の開始・対応

鉄道 MMS は在来線で2台、新幹線で1台を同時に運 用し、1年間で総延長約10,000km、のべ日数約450日 の計測を計画して進めています。計測データ(図4)の 処理・解析はアジア航測が行い、計測ごとに品質を確保 した成果を順次提供しています。成果提供の手段として、 アジア航測と IR 西日本が共有できる解析結果閲覧サービ

図4 鉄道MMS計測データ (三次元点群データ)

スを Web 上に構築しています。運用ルールに基づきこ の閲覧サービスのデータベースをアジア航測が日々更新 することで、作業の進捗とホーム・建築限界の解析結果 を IR 西日本管内全域の関係部署にあるパソコンのブラウ ザ上で閲覧できるようにしています(図5)。

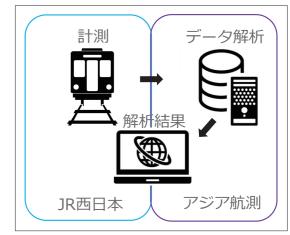


図5 運用システムのイメージ

おわりに

鉄道 MMS の本格運用が始まり、高精度で均質な検測 結果の提供や蓄積された点群データの活用が期待されて います。今後は処理解析のさらなる自動化を図り、持続 可能なデータ生産体制を構築することで、高品質で安定

した成果の提供を目指します。

最後になりましたが、IR 西日本の関係各位には、多大 なるご指導・ご協力をいただきました。ここに記して、 厚く御礼申し上げます。