# 深層学習による光学衛星画像からの 浸水域·浸水深自動抽出技術開発

戦略的イノベーション創造プログラム「国家レジリエンス(防災・減災)の強化」

キーワード: 衛星リモートセンシング. AI. 防災

先端技術研究所 金田 真一

国土保全技術部 川口 和也・戸村 健太郎

## はじめに

2020年6月に閣議決定された第4次宇宙基本計画で は宇宙政策の今後の目標として「災害対策・国土強靭化 や地球環境課題の解決への貢献」が新たに明記され、 2022 年度までに、衛星データを活用した災害状況の迅速 な把握等のためのシステム開発、社会実装が求められてい ます。アジア航測は、内閣府が推進する戦略的イノベーショ ン創造プログラム第2期(以下、SIP2)の課題の1つで ある「国家レジリエンス(防災・減災)の強化」に2018 年末から5年計画で参画しており、多くの研究機関や企 業等とともに、衛星データ等即時共有システムと被災状況 解析・予測技術の開発を進めており(図1)、衛星観測後 2時間以内に、1/50,000地形図等への重ね合わせを意図 した災害情報の提供を目指しています。本稿では、開発の 成果と社会実装へ向けた動きをご紹介します。

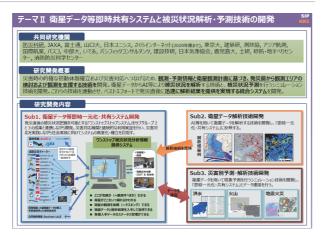



図1 SIP2国家レジリエンス(防災・減災)の強化 衛星データ等即時共有システムと 被災状況解析・予測技術の開発の概要

#### 解析システムの概要

106

SIP2 では災害時の的確な初動体制の確立のため、気象・ 水文情報等をもとにした災害予測(図1、Sub3)や、世 界各国で運用されている多くの衛星の観測計画を、ワン ストップシステムに集約、最適化することで衛星観測の 迅速化を狙っています(図1、Sub1)。アジア航測は、 こうして得られた光学衛星画像から浸水域や浸水深の分 布を自動的に求め(図1、Sub2)、再度ワンストップシ ステムを通じて、国や自治体といった関係機関に配信す る構想を持っています。

衛星画像は数十km 四方を一度に撮影することから、 広域災害の状況把握に有用ですが、技術者による目視判 読には時間を要するため、自動解析による省力化が必要 となります。従来のルールベース型の解析では、当日の 気象・日照条件・季節の違いなどに応じて細かい解析条 件の調整が必要でした。SIP2 では過去の衛星画像に対し て深層学習を用いることで、様々な撮影条件に対応可能 な自動解析システムを目指しています(図2、図3)。

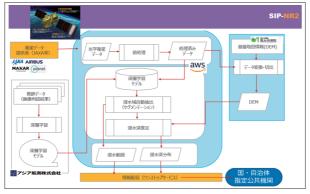



図2 浸水域と浸水深分布の自動解析の概略図

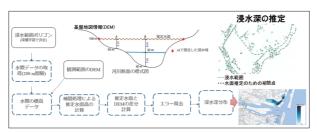



図3 浸水深分布の推定フロー

# 浸水域の抽出結果

浸水域の解析に用いた光学衛星画像は表1の通りです。 現行運用されている衛星のうち、WorldView-2.3や Pleiades は地上解像度 1m 未満で詳細な画像が得られる 反面、観測幅が 20km 程度と狭くなっています。一方、 SPOT-6,7 は地上解像度 1.5m とやや粗いかわりに観測 幅が60kmと広く、広域観測に適しています。2021年 度以降打ち上げが予定されている先進光学衛星 (ALOS-3) は高い解像度と広い観測幅の両方を満たしており、防 災分野での活用にも期待が持たれています。

浸水域の抽出には、深層学習の畳み込みニューラルネッ トワーク (CNN) を利用しました。学習用データとして は、過去の浸水事例 (H30年7月豪雨高梁川、令和元年 台風 19号阿武隈川·宇多川·荒川、H27年9月関東· 東北豪雨鬼怒川等)の衛星画像(図4)を目視判読した ものを用いました。

図5中央は深層学習による浸水域の抽出事例を示して います。また、抽出した浸水域と DEM (基盤地図情報 数値標高モデル)から浸水深分布を推定したものが図5 右であり、このような推定結果の可視化も可能です。

表 2 は目視判読結果と比較した抽出精度を示していま す。衛星は SPOT-7、H30 年 7 月豪雨 (倉敷) と H27 年 9月関東・東北豪雨(常総)での画像を用いました。一般 的な精度評価の指標であるF値は、マルチスペクトル画 像で6割後半、パンシャープン画像で7割後半程度であり、 緊急時の速報用に縮尺5万分の1地図に重ね合わせる用 途としては、おおむね満足のいく結果と言えます。

このような深層学習による浸水域・浸水深の解析は、現 状では GPU 搭載 PC を用いて SPOT 衛星の画像 1 シーン (3,600km<sup>2</sup>) を約20分で解析できます。今後、衛星観測 から画像データ提供までを1時間以内に抑えられれば、 SIP2 が目指す「観測後 2 時間での災害情報提供」は十分 達成可能です。大規模災害に対しても、AWSのようなク ラウドシステムの活用により対応可能だと考えています。

表1 主な光学衛星

| 衛星                          | 地上分解能    | 観測幅     | 機数 |
|-----------------------------|----------|---------|----|
| 先進光学衛星<br>(ALOS-3)          | 0.8m     | 70km    | 1  |
| Sentinel-2                  | 10 ~ 60m | 290km   | 2  |
| WorldView-2,3,4<br>GeoEye-1 | < 0.5m   | 13-16km | 2  |
| Pleiades                    | < 0.5m   | 20km    | 2  |
| SPOT-6,7                    | 1.5m     | 60km    | 2  |

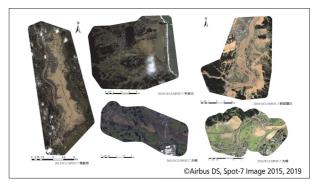



図4 深層学習に用いた衛星画像

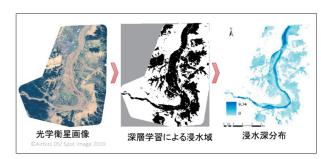



図5 深層学習モデルによる浸水域・浸水深分布の解析例 (2019年宮城県丸森町での事例。SPOT-7を利用)

表2 浸水域の分類精度

|        | H30年7月豪雨(倉敷) |           | H27年9月関東·東北豪雨(常総) |           |
|--------|--------------|-----------|-------------------|-----------|
|        | MS(6.0m)     | PAN(1.5m) | MS(6.0m)          | PAN(1.5m) |
| 精度(%)  | 84.6         | 93.2      | 82.2              | 90.4      |
| 適合率(%) | 60.9         | 74.1      | 63.9              | 79.7      |
| 再現率(%) | 85.0         | 88.0      | 70.9              | 75.9      |
| F値(%)  | 70.9         | 80.4      | 67.2              | 77.7      |

### おわりに

SIP2 では出口戦略としての社会実装化も求められてい ます。アジア航測は、三菱電機、パスコ、スカパー JSAT、日本工営、リモート・センシング技術センターと ともに、2021年6月、衛星データサービス企画株式会社 (略称 SDS)を設立しました。

この会社は、2023年度からの本格サービス提供開始を 目指して事業検討を進めています。平時の広域かつ継続 的な国土・インフラ監視および近年甚大化する自然災害 に迅速、確実に対応できる体制を構築し、安心・安全な 社会形成を通じた SDGs の達成に貢献していきます。