空中写真を活用した 森林被害地における植生高変化の把握

SfM解析技術**1を用いた森林の広域質的情報取得の試み

キーワード: 空中写真. SfM解析. 植生高モデル. 森林被害

西日本国土保全コンサルタント技術部 横田 潤一郎・池田 除るこ

九州インフラ技術部

は せがわ ゆうた 長谷川 雄太 西日本空間情報部 坂口 智哉

はじめに

マツ枯れやナラ枯れなど、大規模な森林被害が全国で 問題となっています。この森林被害については、上空か らの目視監視や、衛星画像解析、植生分布の経年変化分 析などにより、実態の把握が試みられています。

森林被害地では、樹形の欠損や林冠ギャップ(高木が ない森林の隙間)が見られます(図1)。そのため、航空レー ザ測量などにより、植生の高さ情報が把握できれば、森 林被害に伴う樹木の枯死や成長阻害、林内構造の変化な ど、被害の質的評価が可能になると考えられました。

一方で、航空レーザ測量の高頻度調査は、コスト面か ら難しい場合があります。また、UAV (無人航空機)を 用いた空中写真 SfM 解析により植生高を求める手法もあ りますが、広域調査では効率面の限界があります。これ らの手法に対し、従来の空中写真測量は低コストであり、 広域・高頻度調査に適しています。

この空中写真測量の成果から植生高を把握できれば、 広域の森林モニタリング調査に有効です。今回、天ヶ瀬 ダム湖周辺における植生調査において、森林被害を上記 手法により把握した事例を紹介します。

図1 ナラ枯れに伴う被害状況 左:大枝が枯れ樹冠部が大きく欠損しているコナラ 右:高木層が見られない大きな林冠ギャップ

空中写真からの3Dモデル作成

最初に調査範囲の 3D モデルを、2020 年 10 月に垂直 撮影した空中写真画像の SfM 解析により作成しました。 近年の空中写真画像は2億画素を超えており、普及して いる SfM 解析ソフトでは処理できません。そのため、専 用ソフトウェア (SURE Aerial) と高速処理環境により、 解析処理を実施しました。

また、急傾斜地や樹木の影で撮影死角がなるべく発生 しないよう、撮影は通常より密なオーバーラップ率80%、 サイドラップ率 60% で行いました。これにより、地面に 近い垂直面を除いて、死角が少ない3Dモデルを作成で きました (図2左)。樹形が明瞭な針葉樹では、樹木の一 本一本の形状も把握できることがわかりました(図2右)。

図2 空中写真から作成した3Dモデル 左:ダム湖周辺の森林 右:針葉樹の樹冠形状

植生高モデルの作成と精度

3D モデルから DCHM (植生高モデル) を作成しまし た(図3)。3Dモデルから、樹木や建物などの地物表面 の標高 (DSM:表層モデル) を取得できます。この値から、

地盤の標高(DEM:標高モデル)を差し引くことで、植 生高を求めることができます。本検討では、2013年に 航空レーザ測量で取得された正確な地盤データを活用し

ました。大規模な地形変化がない限りは、地盤標高値の 経時変化は小さいため、直近の航空レーザ計測成果と比 較することで現在の正確な植生高を把握できます。

求めた植生高を、現地で実測した樹高で検証したところ、 平均誤差率は 7.8%、 RMSE は 2.42 でした。 斜面地では、 傾斜方向に樹木が張り出すため、やや過大となる傾向があ りましたが、概ね正しい植生高を再現できました。

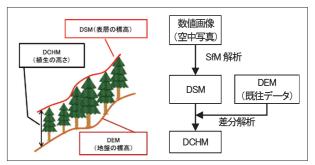


図3 DCHMの作成

植生高変化の分析

植生調査で把握した植物群落ごとに、今回求めた植生 高と、航空レーザ測量時の植生高を比較しました(表1)。 その結果、スギ、ヒノキの植林地や、センダン、ヌルデ、 アカメガシワといった陽性低木林では、7年間の成長を 反映し、平均植生高が増加しました。特に、成長が速い ことで知られるセンダン群落では、約2.5mも植生高が

増加していまし た。一方、森林

被害が顕著なア カマツ群落、コ ナラ群落では平 均植生高の低下 が確認されまし た。

表1 植牛高の変化(2013-2020年) センダン群落 スルデーアカメガシワ群落 カッコウアザミ群落 ケヤキ群落 ヌルデーア

植生高変化の面的分布について、「アカマツおよびコナ ラ群落分布地 | (図4上)と、「その他の植物群落分布地 | (図4下)で比較してみました。アカマツおよびコナラ群 落では広域で植生高が低下しており、場所によっては 10m以上も低下していました。対して、その他の植物群 落では2~4m程度、増加しているところが広く、森林 被害の影響をほとんど受けずに健全な様子が伺えます。

特にコナラ群落では、図1で示したように大枝が折れ

ている状況や林冠ギャップが確認されました。つまり、 植生高の変化は、樹木の倒伏や欠損を定量的に指標して いると考えられます。さらに、経年的に植生高の情報を 取得できれば、植物群落の健全度の把握につながります。

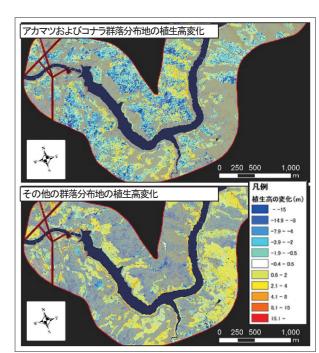


図4 群落別の植生高変化の面的分布(2013-2020年) 上:アカマツおよびコナラ群落、下:その他の植物群落

おわりに

本稿では、空中写真からの 3D モデル作成により、面 的な植生高を低コストで効率的に把握できる技術を紹介 しました。正確な植生高の分析には、航空レーザ測量に よる正確な地盤標高値が必要となりますが、当該データ は現在、急速に整備が進んでいます。

今回の調査では定量的な植生高情報から、森林被害実

態の基礎的な資料を整備することができました。低コス トで整備できる植生高情報は森林被害調査の他にも、森 林資源量の賦存量の把握や、バイオマス量の変化を踏ま えたカーボン・オフセットに関する調査など、幅広い活 用を想定できます。

※1 Structure from Motion:多視点画像からの3D形状復元技術