関東地方整備局富士川砂防事務所長優良業務表彰 R1早川下流部航空レーザ測量業務 航空レーザ計測データを活用した土砂移動マグニチュードの算出事例

土砂移動規模の把握の試み

キーワード: 航空レーザ計測, 土砂移動現象の規模, 土砂移動マグニチュード

国土保全技術部 染谷 哲久・太井 正史・柏原 佳晴

はじめに

近年、多発する豪雨により、がけ崩れなどの狭い範囲 の土砂災害から土石流が同時に広域で多発するような土 砂災害まで、様々な規模の土砂災害が発生しています。 地震ではマグニチュードや震度、台風では風速(暴風域・ 強風域の大きさ)など、現象の規模を表現する指標が一 般に浸透していますが、土砂災害については規模を表現 する指標は十分に浸透していないと推定されます。今後 は、がけ崩れや地すべり、土石流などの名称だけではなく、 土砂災害の規模となる指標も一般に浸透することにより、 土砂災害への意識向上が期待されます。

土砂災害の規模を示す一つの指標として、土砂移動マ グニチュードという考え方があります」。この考え方で は、個別の土砂移動現象の規模を算出し、算出結果を合 計して流域全体や土砂災害時の規模を評価します。ただ し、以前は広域の土砂災害ではすべての箇所で土砂移動 現象などを調査するのは困難であり、土砂移動現象の高 精度な把握が困難でした。一方、近年は航空レーザ計測 が同じ地域で複数回実施されるようになり、土砂移動現 象を精度よく把握できるようになってきました。本業務 では、富士川砂防事務所管内の早川下流部において、航 空レーザ計測データを活用して直近2年間の土砂移動現 象による土砂移動マグニチュードを算出し、既往の災害 事例と比較することにより、早川下流部の土砂移動の規 模や特徴を分析しました。

土砂移動マグニチュードとは

土砂移動マグニチュードは、内田ら(2005)¹⁾ によっ て提唱された土砂移動現象の規模を表現する手法の一つ であり、(1) 式で算出します。

$$SMM = \log_{10}(HV) \tag{1}$$

ここで、SMM:個別の土砂移動現象の土砂移動マグニ チュード H (m): 比高 V (m³): 発生土砂量 にな ります。この式から、土砂移動マグニチュードは移動(発 生) 土砂量 (m³) と移動比高 (m) の積で評価すること が分かります。また流域全体や土砂災害イベント全体の 土砂移動マグニチュードは、(2) 式で算出します。

$$SMMevent = \log_{10} \left(\sum_{i=1}^{n} HiVi \right)$$
 (2)

ここで、n:1イベントで発生した土砂移動現象数 Hi (m):1イベントで発生した土砂移動現象の内、SMM が 大きい方からi番目の土砂移動現象の移動比高 Vi(m³): 1 イベントで発生した土砂移動現象の内、SMM が大きい 方からi番目の土砂移動現象の移動土砂量になります。 この式から流域全体や土砂災害イベント全体の土砂移動 マグニチュードは、個別の土砂移動の移動(発生)土砂

量 (m³) と移動比高 (m) の積の値を合計して評価する ことが分かります。

本業務では、発生土砂量は2時期の航空レーザ計測 (2018年6月~7月と2020年6月~10月:2020年7 月の降雨により雨畑川の八潮崩れで大規模な崩壊が発生) 結果の標高差分(最近の標高から過去の標高を減じる: マイナスは発生・プラスは堆積)から算出しました。ま た比高は、土砂移動現象の発生範囲のうち最も高い標高 と、堆積範囲の最も低い標高との差を算出しました。なお、 土砂移動マグニチュードの算出においては、土砂移動の 発生・堆積の明瞭な関係が必要です。そのため、図1に 示すように発生域と堆砂域の関係が明瞭な土砂移動のみ 十砂移動マグニチュードの算出対象としました。

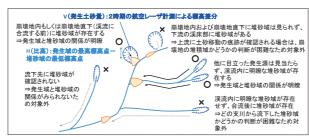


図1 土砂移動マグニチュード算出対象の模式図

早川下流域における土砂移動マグニチュードの算出結果

早川下流部では、合計で230箇所の土砂移動マグニ チュード算出対象となる土砂移動現象を抽出しました(図 2)。箇所数としては雨畑川の131箇所が最も多く、春木 川の24箇所、早川下流残流域の19箇所と続きました。 また流域面積当たりの箇所数では雨畑川の 1.26 箇所 /km² が最も大きく、ハリマ沢の 1.19 箇所 /km²、春木川の 1.15 箇所 /km² と続きました。

また個々の土砂移動現象の土砂移動マグニチュードの値

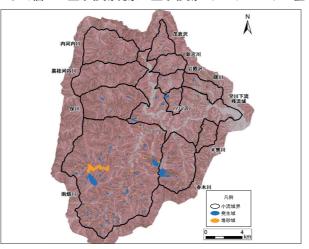


図2 土砂移動マグニチュード算出対象の土砂移動現象分布図

を算出し、各流域全体の土砂移動マグニチュードの値を算 出しました(図3)。2020年7月に大規模な崩壊が発生 した八潮崩れや御池の沢がある雨畑川では、9.97と最も 大きな値となりました。また七面山崩れがある春木川が 8.50となり、次に大きい値となりました。春木川は同程 度の流域面積の小流域のなかでも値が大きいことが分かり ます。

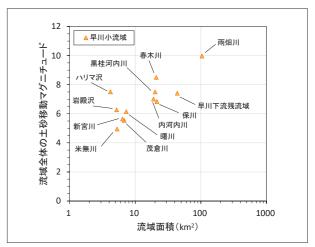


図3 流域面積と流域全体の土砂移動マグニチュードとの関係

既往の土砂災害事例との比較

本業務で算出した早川下流部における土砂移動マグニ チュード算出値を、内田ら(2019)2 に掲載されている土 砂災害イベント 16 事例と比較しました。雨畑川の土砂移 動マグニチュードの値は、約2年間における土砂移動の結 果から算出したものであるものの、過去のイベント土砂移 動マグニチュードの値と比較すると、2004年新潟県中越 地震や 2005 年台風 14号による災害の事例と同程度の値 でした。また、発生土砂量が相対的に少ないものの土砂移 動マグニチュードの値は大きい結果となりました。土砂移 動マグニチュードは発生土砂量と移動比高の積から算出す るため、発生土砂量が少なく土砂移動マグニチュードの値 が大きいということは、移動比高が大きいことになります。 早川下流部は勾配が急な高標高域に位置しており、他の事

例と比較した結果から崩壊や土石流による移動比高が大 きいことが特徴と考えられます。

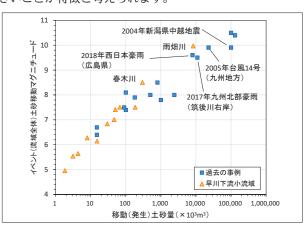


図4 移動(発生) 土砂量とイベント(流域全体) 土砂移動マグニチュードとの関係

おわりに

本業務では、土砂移動マグニチュードを算出すること により、各土砂災害の規模の比較や土砂移動の特徴が分 析できるようになりました。今後、土砂移動マグニチュー

ドの事例を増やしていくことで、将来的に土砂災害の規 模という指標が一般の方にも浸透していくことが期待さ れ、土砂災害への意識向上につながることを望みます。

1)内田太郎・國友優・寺田秀樹・小川紀一朗・松田昌之(2005):土砂災害の規模の表現方法に関する一考察、砂防学会誌、Vol.57、No.6、pp.51-55 2)内田太郎・林直一郎(2019)・十砂移動マグニチュードと十砂災害の特徴の関連性及び早期算出方法、十木技術資料、Vol 61, No 5, pp 30-33

27