砂防事業におけるBIM/CIMに資する 三次元計測の実施事例

UAVレーザを用いた砂防施設設計に向けた取り組み

キーワード: UAVレーザ、三次元計測、地形モデル、CIM、地上レーザ、遊砂地工

中部国十保全コンサルタント技術部 恩藤 (湯川) 典子・菊地 恒太郎

がたなべ としみつ しょう ねいじゃ 音力 まうじ 渡邉 利光・章 乃佳 国土保全コンサルタント事業部 **澤 陽之**

はじめに

UAV レーザ計測は、航空レーザ計測と比較すると、航 空法(都市部・空港等周辺の飛行)による規制や適用面 積(1km²未満)が小さい、連続的な飛行時間(約15分) が短いなどの制約がある一方で、条件を満足すれば、よ り高密度で地形データを取得できるため、現地測量作業 の省力化や後工程の設計・施工段階において活用可能な CIM モデルの作成が可能となります。

ここでは、砂防分野における UAV レーザ計測活用の

先進的事例として、数年以内に砂防施設(遊砂地工・砂 防堰堤)を設計・施工する予定の箇所を対象に、UAV レー ザ計測を実施し、CIM モデルを作成した事例を紹介しま す。

さらに、取得した地形データと地形補備測量結果(地 上レーザ計測・トータルステーションによる横断測量) とを比較し、予備設計や詳細設計への適用性についても 検証しています。

計測対象箇所·計測方法

計測対象箇所は、遊砂地工計画箇所(図1)および谷 出口の堰堤計画箇所(図2)です。河床勾配は1/30~ 1/180程度と砂防事業地としては比較的緩やかであり、 河道付近は植生(人工林・草本)が非常に繁茂している 状況でした。

計測は上空からの測量(UAV レーザ計測)と地上測 量(地上レーザ計測、トータルステーションによる横断 測量)を行いました。

① UAV レーザ計測

レーザ計測器は、最大発射レートが1秒間あたり55 万回のレーザ照射が可能な最新の機器を使用しました。

また、予備設計や詳細設計に活用可能な地形データを 取得するために、要求点密度を 400 点 /m² と設定し、表 1の諸元で計測を実施しました。この性能は、一般的な 航空レーザシステムと比較して、点密度でおよそ 100 倍 の値となります。

図1 游砂地計画筒所例

図2 堰堤計画箇所例

②地形補備測量

UAV レーザで計測が不可能な箇所の地形データ補足、 構造物を含む地形データの検証を目的に、地上測量を実 施しました。

地形データの補足箇所として、橋梁下については、面 的な地形の把握が可能な地上レーザ計測を行いました。

レーザ計測では任意の箇所にレーザ光を照射すること ができないため、天端肩等の端点が十分に再現できない 可能性があります。そこで、構造物の再現状況の検証の ために、砂防施設設計上の重要断面となる横断構造物(床 固工、取水堰、堰堤等)等が位置する横断測線について、 トータルステーションを用いて端点の位置を計測する横 断測量を行いました。

表1 レーザ計測諸元比較表

計測手法	UAVレーザ	航空レーザ*
使用機体	XF-1 pro	-
レーザ計測器	RIEGL VUX-1	Galaxy-PRIME
点密度	400点/m²	4点/m²以上
対地高度	80m	852m~1,640m
飛行速度	3.5m/s	約30m/s
レーザ発射頻度	550kHz	約300kHz
レーザスキャン角	90°	約50°
コース間重複率	60%	約50%

※比較のための参考値(同地域実施の航空レーザ諸元)

計測結果

UAV レーザ計測

地形断面図を作成し、植生繁茂箇所における点群デー タの取得状況を把握しました。スギ人工林のような樹木 密生地においてもレーザが地盤に到達し、地形を再現し ていることを確認しました(図3)。

また、草本が繁茂した箇所においても、地形に加え護 岸の天端肩も再現できていることを確認しました(図4)。

図3 樹木繁茂箇所における点群データ取得状況

図4 草本繁茂箇所における点群データ取得状況

②地形補備測量

橋梁下の地形は、地上レーザ計測データで補足し、面 的に連続な河道の地形データを取得しました(図5)。

また、UAV レーザ計測成果とトータルステーション による横断測量成果を重ね合わせ、護岸の天端高を含む 重要な横断面において、両データが一致することを確認 しました (図6)。

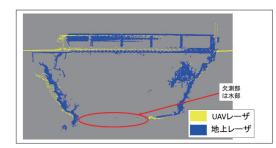


図5 UAVレーザと地上レーザの重ね合わせ図

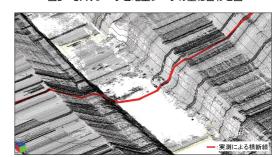


図6 UAVレーザ点群と実測横断線の重ね合わせ図

CIMモデルの作成

CIM 導入ガイドラインに基づき、各種計測データから CIM モデルとして現況地形モデルを作成しました(図7)。

今回、全国的にも施工事例が少ない遊砂地工を検討し ていたため、後工程において、構造物の規模や配置を複 数案試行する可能性が高く、本データは任意の横断面の 切り出しや施設効果量の算定などに有益なデータとなり ました。

砂防施設の計画箇所は、山深く急峻な地形に設定され ることも多いですが、本計測対象箇所は、勾配が緩やかで、 集落付近が対象であったため、近隣に UAV の離発着場 を確保することができ、UAV レーザ計測に適した箇所 であったといえます。

また、レーザ計測器を低高度かつ低速で運航すること で、点密度を確保し、予備設計および詳細設計に適用可 能な計測データを取得することができました。ただし、 詳細設計においては、護岸等の縦断的に連続する既設構 造物が存在する場合、路線測量等により構造物の端点位 置や形状を計測することが望まれます。

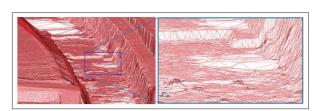


図7 作成したCIMモデル

おわりに

今後、UAV レーザ計測の品質向上・計測範囲の拡大 によって、砂防分野における適用可能性が拡大していく ことが期待されています。各建設生産プロセスにおいて 三次元データの利活用を図っていくためには、測量段階 での計測範囲や精度が後工程にどのような影響を与える のかを把握している必要があります。アジア航測では、

今後も最新の技術を用いて、目的に応じた実用的で質の 高いデータを提供してまいります。本内容は、国土交通 省近畿地方整備局紀伊山系砂防事務所から受託した業務 成果の一部を記載したものです。改めて御礼申し上げま