深層崩壊発生流域における流砂量観測機器の 整備および流砂観測

土砂移動現象の把握を目指して

西日本国土保全コンサルタント技術部 井元 成治・岡野 和行・井之本 誓 うすき のぶひろ 社会インフラマネジメント事業部

はじめに

2011年9月の台風12号により、紀伊山系では深層崩 壊が多発し、河道が閉塞され天然ダムが形成されました。 天然ダムは降雨時に水位が上昇することで、越流侵食が 発生し、多量の土砂が流出する恐れがあります。このた め、天然ダム下流域の安全確保においては、天然ダムの 監視・観測が重要となります。全国の山地河川では、ハ イドロフォンを活用した掃流砂の観測や、濁度計による 浮遊砂の観測など流砂水文観測が盛んに行われ、この観 測データは、土砂移動の把握や監視などに活用されてい ます。本稿では、紀伊山系の深層崩壊発生流域において、 流砂観測施設の整備および流砂観測を実施し、土砂動態 の把握について検討した事例を紹介します。

対象箇所の概要

検討は、紀伊山系の深層崩壊発生箇所のうち、栗平、 赤谷、熊野の3地区を対象としました。栗平地区は、既 設機器による流砂観測を、赤谷地区、熊野地区は、流砂 観測施設を整備し、流砂観測を実施しました (表1)。

表1 対象箇所の概要

流砂観測施設の整備

1) 流砂観測施設の条件検討や関係機関との調整

赤谷地区、熊野地区では、複数時期の航空レーザ計測 データを活用し対象範囲周辺の土砂移動状況などを把握 したうえで、観測機器の仕様や設置箇所を検討しました。 また、機器設置にあたっては、関係機関(奈良県、和歌山県) に河川法関連の許可申請資料を迅速に提出し、関係機関 との調整が円滑に完了するように努めました。

2) 流砂観測施設の整備

流砂観測施設の整備は、電気工事(商用電源引込み工

事)、仮設備工(水替え、仮設足場設置および撤去)、コ ンクリート工(はつり、埋戻し)、観測機器設置工(ハイ ドロフォン、水位計、濁度計、データロガーの設置)を 実施しました (表 2、図 1)。工事時の安全管理では、出 水した場合に備えて、見張員を配置し、作業員に対し避 難経路を周知しました。また、仮設備工で必要となった 足場の設置時、使用時、撤去時は、足場の組立て等作業 主任者資格を保有する施工管理者が現地にて監督し、事 故防止に努めました。

栗平地区は2017年6月(2017年9月よりアジア航 測で観測を実施)から、赤谷地区は2018年3月から、

熊野地区は2018年2月から観測を開始しました。

表2 設置観測機器

図1 流砂観測施設の整備状況

流砂観測の実施

3地区の流砂観測では、月1回観測データを回収し、整 理・分析を行いました。2017年10月の台風21号(10 月 20 日から 10 月 24 日で累加雨量 468.5mm を記録) では、栗平地区で大きな土砂移動現象が発生したため、 観測データと土砂移動現象との関係性などを整理しまし た。その結果、ハイドロフォンによる掃流砂量や、濁度計 による浮遊砂量の観測データから、観測施設周辺の土砂 移動現象発生タイミングなどを推測することができまし た(図2)。特に、10月23日0時過ぎに発生したハイド ロフォンと底面流速計の観測値の急激な低下は、その時 刻に観測地点に大量の土砂が流出し、機器が土砂に埋没 したことを示すと推察されます。掃流砂量等の値を観測 するだけでなく、天然ダム越流侵食等による大規模な土 砂移動の検知を行える可能性があることが分りました。

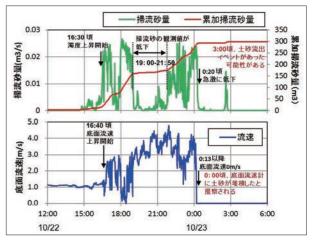


図2 栗平地区の流砂観測結果 (上:ハイドロフォン、下:底面流速計)

おわりに

今回の流砂量観測から、天然ダム越流侵食時の流量や 流砂量の時系列変化を把握しました。この結果を、天然 ダムの水位変化や監視カメラの画像、越流侵食直後の航 空レーザ計測データなどと合わせて検討することで、天 然ダム越流による土砂移動特性がより詳細に解明される ことが期待されます。

本技術紹介にご協力頂きました国土交通省近畿地方整 備局紀伊山系砂防事務所に謝意を表します。