海外における再生可能エネルギー事業

バイオマス燃料活用型発電システムの改良および実証試験

エネルギーソリューション技術部

首都圏営業部

はじめに

バイオマスを燃料とするエンジンに「スターリングエ ンジン(図1)」があります。当エンジンは、シリンダー 内の空気を燃料炉から提供される熱で加熱し、空気の膨 張と収縮により動力を得る外燃機関であり、動力を発電 機に伝え、電気を得ることができます。アジア航測では、 将来、スターリングエンジンをミャンマーで普及させる ことを目的に、機器の改良及び実証試験を行いました。 実証試験の主な実施項目は、①ミャンマー農村地域のエ ネルギー利用状況の調査、②スターリングエンジンに利 用可能なバイオマス種の選定、③スターリングエンジン の実証試験です。

なお、機器の改良は株式会社瀧野工業(神奈川県平塚市) が担当しています。

本事業は「平成28年度~平成29年度 環境省 途上 国向け低炭素技術イノベーション創出事業」の補助を受 けて実施しました。

図1 スターリングエンジン

ミャンマー農村地域のエネルギー利用状況の調査

電力網の普及が進んでいない農村地域をスターリング エンジンの普及ターゲットと定め、同地域におけるエネ ルギー利用の現状およびスターリングエンジンの燃料と なるバイオマスの入手可能性を把握するため、現地調査 を行いました。

エネルギー利用の調査から、住民はディーゼルエンジ ンおよび発電機を自ら購入し、電力を得ていることが分 かりました(図2)。しかしながら、住民にとって、ディー ゼルエンジンおよび燃料購入のための支出は大きな負担 になっています。農村地域のうち稲作地帯では大量に発 生するもみ殻を燃料としたバイオマスガス化発電により、 支出の軽減を行っている事例が見られました。一方、畑 作地帯(乾燥地帯)ではこのような事例は見られず、作 物の収穫後に残る葉、茎および殻(以下、作物残さ)が 未利用のまま廃棄されていました。

したがって、稲作地帯および畑作地帯いずれでも作物

残さをスターリングエンジン用のバイオマス燃料として 利用可能であることが分かりました。特に畑作地域では、 作物残さが未利用であることから、スターリングエンジ ンが普及すれば、廃棄物の有効利用と電力供給を並行し て進められるメリットがあると見込まれました。

図2 自家発電のディーゼルエンジン

スターリングエンジンに利用可能なバイオマス種の選定

現地調査より得られた作物残さから、スターリングエ ンジンに適していると考えられるバイオマス種をカウン ターパート (Ministry of Education / Department of Research and Innovation)と協議の上、選定しました。 選定条件は、大量に発生し、容易に入手可能であり、未 利用であることなどとしました。協議の結果、①もみ殻、 ②プラムの外皮、③緑豆の木(図3)、④ピーナッツの殻、 ⑤ゴマ収穫後の木の5種類を選定しました。

緑豆の木は、収穫後に大量に発生する残さであるにも かかわらず、これまで全く利用されておらず、畑で焼却 処分されていました。

図3 緑豆の木

スターリングエンジンの実証試験

スターリングエンジンをミャンマーのヤンゴン市内に 輸送し、実証試験を行いました(図4)。

実証試験の結果、全ての燃料の燃焼が確認でき、スター リングエンジンの燃料として活用可能であることが示さ れました。特に、緑豆の木とピーナッツの殻は高い燃焼 性を示し、有効性を確認できました。

一方で、燃料の密度や形状には個別の特性があるため、 燃料の破砕処理による形状の均一化が必要なこと、灰の 排出システムに改良の余地があることが分かりました。 実証試験終了後、スターリングエンジンを日本に輸送し、 瀧野工業にて技術的課題への取り組みを継続して行って います。

図4 実証試験の状況

おわりに

ミャンマーのように今後大きな経済発展が見込まれる 国では、都市部のインフラ開発に多額の投資が行われて いる一方で、農村地域のインフラ整備は後回しにされて いる状況にあります。電力については、送電線整備に多 額の投資が必要なため、農村地域への普及はまだ先とな ることが見込まれています。現状では、各集落や世帯単 位でディーゼルエンジンを使っていますが、費用面およ び品質面で課題があり、住民の生活を圧迫している状況 にあります。

こうした状況を改善するための手段として、豊富に存 在しながら利用されていない作物残さをバイオマス燃料 として活用することが考えられます。現地調査より得ら

れたデータをもとに試算したところ、スターリングエン ジンの本体購入費用を含む運用コストが運用開始後5年 程度でディーゼルエンジンに比べて割安になることが予 測されました。しかし、スターリングエンジンは住民に とって高価であり、普及のためには本体価格の低減と併 せて、分割払いや使用料の分割徴収方式などの仕組みづ くりが課題です。

今後は、ミャンマーに限らず日本国内においても、未 利用の作物残さの燃料化を見据えた発電事業へのスター リングエンジンの活用に向けて、瀧野工業とアジア航測 で取り組みを続けていきます。