新規車両(MMS7号機)の紹介と 新たな事業展開

MMS機材別性能比較と空港路面性状業務の新たな展開

キーワード: MMS (車載型レーザ計測システム) 空港施設点検 路面性状 公共測量 全方位カメラ

東日本空間情報部 大上 岳彦・杉山 京平・井久保 昌博 松井 晋

はじめに

近年、新たな計測技術として発展を続けている車載型 レーザ計測システム(以下 MMS)は、道路台帳図化業務、 道路および空港の路面性状調査、地籍、i-Construction などに活用するための三次元データ取得業務の多種化に 伴い、機材の多様化が進んでいます。アジア航測では、 多種化した業務に対応するため令和4年度にMMS7号 機(図1)を新規に導入し、現在計4台のMMS車両を

運用しています。

本稿では、MMS7号機 を含む機材別の性能を紹 介し、新たな事業展開と して空港路面性状業務へ の MMS 活用事例を報告 します。

図1 MMS7号機

新規車両(MMS7号機)の導入と機材別性能比較

MMS は、レーザスキャナ、デジタルカメラ、GNSS/ IMU(衛星測位と慣性計測装置による自己位置計測シス テム) などのセンサーを組み合わせ、走行経路周囲の空 間情報を取得するシステムです。令和4年度に導入した MMS7 号機を含め、アジア航測の保有する MMS の性能 を表1に示します。MMS7号機は、詳細な三次元データ の活用を見据えて、高精度の GNSS/IMU と高解像度の 全方位カメラを実装しています。これにより、GNSS 測 位が困難な都市部での計測精度の劣化を抑制することが 可能となります。また、3軸の傾き性能やデータの取得 頻度も高く、作業規程の準則(第4章第179条4項)の 規定内の数値となっており、公共測量への適用が可能で

表1 機材別性能表

	1・2号機	5号機	7号機		
機体名	Streetmapper360	MMS-X210ZAL	MMS-G		
	IGI社製(独)	三菱電機(日)	三菱電機(日)		
GNSS/ IMU	Heading:0.01° RMS	Heading:0.00001°	Heading:0.00001°		
	Roll:0.004° RMS	Roll:0.00001°	Roll:0.00001°		
IIVIO	Pitch:0.004° RMS	Pitch:0.00001°	Pitch:0.00001°		
	取得頻度 250hz	取得頻度 100hz	取得頻度 250hz		
レーザ 製品名	Riegl VQ-250 ×2台	Z+F Profiler 9012 ×1台 SICK LMS511 ×1台	Z+F Profiler 9012 ×1台		
発射レート	300khz	1016khz	1016khz		
(MAX)	300KH2	27.1khz	27.1khz		
回転数	100回転/S	200回転/S	200回転/S		
(MAX)		100回転/S			
40km/h 走行	900点/㎡	3000点/㎡(計測距離5m)	3000点/㎡		
点密度	(計測距離5m)	80点/㎡ (計測距離5m)	(計測距離5m)		
計測距離 (MAX/実行)	500m/100m	119m	119m		
測距精度	10mm	2mm	2mm		
デジタル		500万画素×2	500万画素×4		
カメラ	_	(前方左右)	(前方左右、後方左右)		
全方位カメラ	全方位カメラ	全方位カメラ	全方位カメラ		
	Ladybug3	Ladybug5	Ladybug5+		
	1460万画素(パノラマ)	3200万画素(パノラマ)	3200万画素(パノラマ)		
絶対位置 計測精度 (GNSS良好時)	10cm以下 メーカー実証実験値	10cm以下 メーカー実証実験値	10cm以下 メーカー実証実験値		
オプション	クロスレーザ計測	ラインカメラ(路面性状用) 4m四方 1600万画素	台車利用可能		

機体別対応業務の比較

MMS7 号機に搭載した全方位カメラ (Ladybug5+) は、 従来と比較して文字や構造が詳細に判読できるようにな りました (図2)。そのため道路台帳図化業務や路面性状 調査だけでなく、i-Construction や道路施設点検、地籍 業務など対応可能な業務の幅が広がりました(表2)。

図2 全方位カメラ比較画像(拡大)

表2 機体別業務対心表												
業務	当 道路台帳整備 (その他図化含)	街路樹調査	屋外広告調査	緊急輸送路 調査	道路斜面防災 (航空LPと併用)	縦断図・横断 図作成	地籍調査 (街区点測量図)	路面性状 認定試験 (As、Co)	簡易路面性状 (LVひび割れ 目視判読)	空港 路面性状 (As、Co)	空港 定期縦横断 (舗装面)	
1 • 2둑	機	0	0	0	0	Δ	×	×	0	×	×	
5号		Δ	Δ	0	Δ	0	Δ	0	Δ	0	0	
7号		Δ	Δ	0	0	0	0	×	0	×	0	

(○:使用可、△:条件付きで使用可、×:使用不可)

MMSを活用した空港定期点検業務への参入

活用の幅が広がった事例として空港定期点検業務があ ります。空港施設の舗装の変状の程度、時間経過に伴う 劣化状況などを定期的に把握・評価するために実施しま

従来までの空港定期点検業務は、路面性状調査と定期 点検測量(1回/3年)を別々に実施していました。 MMS を用いた調査は、路面性状調査と定期点検測量を 同時に実施することができ、点検業務の効率化を図るこ とができる利点があります。また、この点検方法は「空 港舗装等維持管理マニュアル (国土交通省航空局)」にも 採用されています。

空港定期点検業務に MMS を適用するメリットは大き く2つあります。

- ① 路面性状調査と定期点検測量を同時に実施すること により現地立ち入りが少なくなり、空港事業におい て一番重要な安全の確保・航空機運航の妨げの軽減 が可能で、リスク回避にもつながります。
- ② 滑走路・誘導路・エプロンの舗装面を面的に取得で きるため、従来測定では同時に実施が出来なかった 灯火位置情報などの別業務の調査が可能となりま

空港定期点検業務へのMMS5号機の活用

アジア航測の保有するMMSのうちMMS5号機は、レー ザスキャナに加え、夜間でも 1 mmのひびが判別可能なラ インカメラを搭載しており、空港での路面性状調査業務 で威力を発揮しています(図3)。

ひび割れ率はラインカメラ画像データから算出し、わ だち掘れ量・BBI (縦断方向の平坦性)・目地部の破損率・ 段差量は三次元点群データから算出して路面評価を行う ことが可能です。

定期点検測量とは、滑走路、誘導路、着陸帯および滑 走路端安全区域の縦横断勾配を定期的に測量することで す (図 4)。「空港土木設計・測量・地質土質調査・点検 業務共通仕様書(国土交通省航空局)」では、三次元点群 測量またはネットワーク型 RTK 法の利用も認めており ます。このため、アジア航測では、舗装面は MMS を用 いて効率よく安全に計測し、緑地帯はネットワーク型 RTK 法で測量した結果を用いて縦横断図を作成していま す。

図3 MMS路面性状調査車両およびラインカメラ画像の例

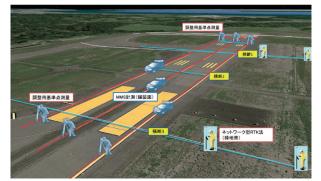


図4 定期点検測量でMMSを活用したイメージ

おわりに

本稿では、新しく導入した MMS を含むアジア航測が 保有する MMS 機体別の機能と、新たな事業展開として MMS を活用した空港定期点検業務について紹介しまし

MMS は一度に舗装面を面的に計測でき、現地作業期 間の短縮の利点があると考えます。特に7号機は、国が 進める i-Construction や地籍基本調査における「効率的 手法導入推進基本調査 | に積極的に活用していきたいと 考えます。MMS は都市域などの広範囲の計測には不向

きな機材となりますが、局所的に高精細なデータを取得 することが可能です。このため、網羅的に計測すること が可能な航空機や UAV (無人航空機) による計測成果 データともセンサフュージョンを実現することで、利活 用の拡大が期待できます。

アジア航測は、センシング技術の追求のもと、作業の 効率化・コスト削減・精度向上を目指し、社会基盤(イ ンフラストラクチャー)を空間情報で支える企業を目指 します。

For the Future 2023